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1. Introduction and Circulant TSP

The Symmetric Traveling Salesman Problem (TSP) is a
fundamental problem in combinatorial optimization and a
canonical NP-hard problem. An input consists of a set of
n vertices [n] := {1, 2, ..., n} and edge costs cij = cji (for
1 ≤ i, j ≤ n), indicating the costs of travelling between
vertices i and j. The TSP is then to find a minimum-cost
Hamiltonian cycle, visiting each city exactly once.

With just this set-up, the TSP is well known to be NP-
hard. An algorithm that could approximate TSP solutions
in polynomial time to within any factor α > 1 would imply
P=NP (see, e.g., Theorem 2.9 in Williamson and Shmoys
[31]). Thus it is common to consider special cases that
restrict the edge costs. For instance, requiring costs to
be metric (so that cij + cjk ≥ cik for all i, j, k ∈ [n]), to
correspond to distances in an underlying graph on [n], to
correspond to euclidean distances between n points in R2,
to restricting cij ∈ {1, 2} for all i, j (the (1, 2)−TSP). See,
e.g., [2, 3, 8, 17, 18, 22, 23, 24, 25, 26, 28, 29] amoung
many others.

One special case that is particularly intriguing, but
where relatively little is known, is the circulant TSP. Cir-
culant TSP instances are those whose edge costs can be
described by a circulant matrix, which imposes substan-
tial symmetry: the cost of edge {i, j} only depends on
(i − j) mod n. We implicitly assume that the edge costs
are symmetric, so that circulant TSP instances can be de-
scribed by a (symmetric, circulant) cost matrix with ⌊n

2 ⌋
parameters c1, c2, ..., c⌊n

2 ⌋:

C := (ci,j)
n
i,j=1 =



0 c1 c2 c3 · · · c1
c1 0 c1 c2 · · · c2

c2 c1 0 c1
. . . c3

...
...

...
...

. . .
...

c1 c2 c3 c4 · · · 0

 , (1)
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with c0 = 0 and ci = cn−i for i = 1, ..., ⌊n
2 ⌋. That is, the

cost of traveling between vertices i and j is

ci,j = cmin{(i−j) mod n,(j−i) mod n}.

We interpret min{(i − j) mod n, (j − i) mod n} as the
length of the the edge {i, j}. For instance, edges {1, 2},
{3, 2}, and {n, 1} all have the same length 1, and thus the
same cost c1; see Figure 1. Importantly, in circulant TSP
we do not make the prototypical assumption that edge
costs are metric.
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Figure 1: Circulant symmetry. Edges of a fixed length are indistin-
guishable and have the same cost. E.g. all edges of the form {v, v+1}
(where v + 1 is taken mod n) have length 1, and thus cost c1.

Circulant TSP was first studied in the 70’s, and was
motivated by waste minimization (Garfinkel [10]) and re-
configurable network design (Medova [21]). Intriguingly,
in the 70’s Garfinkel [10] shows that circulant TSP can be
easily and efficiently solved whenever the number of ver-
tices n is prime (see Section 3). More generally, circulant
symmetry imposes just enough structure to sometimes –
but by no means always – make a formally hard problem
tractable. It is not known if this is the case for circu-
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lant TSP, and circulant TSP’s complexity has been often
cited as a significant open problem (e.g., Burkhard [6],
Burkhard, Dĕıneko, Van Dal, Van der Veen, and Woegin-
ger [7], and Lawler, Lenstra, Rinnooy Kan, and Shmoys
[19]).

Since the 70s, most work on circulant TSP’s complexity
stems has been on the simplest non-trivial special case of
circulant TSP: the two stripe symmetric circulant TSP.
This is the special case where exactly two of the edge
costs c1, c2, ..., c⌊n

2 ⌋ are finite. Greco and Gerace [13] and
Gerace and Greco [11] made progress on this case and re-
cently, Gutekunst, Jin, and Williamson [14] resolved it and
showed that the two stripe symmetric circulant TSP prob-
lem was solvable in polynomial time. In parallel, substan-
tial number theoretic work has gone into understanding
what collections of edge lengths can constitute a Hamil-
tonian cycle and/or path (see, e.g., Buratti and Merola
[4], Horak and Rosa, Pasotti and Pellegrini [27], Costa,
Morini, Pasotti, and Pellegrini [9], and McKay and Peters
[20]).

In this paper, we show three new results that build off of
the work of Gutekunst, Jin, and Williamson [14]. In Sec-
tion 2, we begin by briskly introducing background about
circulant graphs and their Hamiltonicity, which we will
repeatedly make use of. We present our first result in
Section 3, which fleshes out connections between circulant
TSP and number theory and shows that circulant TSP is
also efficiently solvable any time the number of vertices
n is a prime-squared; this is the first general complexity
result for circulant TSP based on the factorization of n
since Garfinkel [10] 70’s result that circulant TSP could
be efficiently solved when n was prime. Then, in Section
4, we study the two-class circulant TSP, which specializes
the (1, 2)−TSP to circulant instances: this is the circu-
lant TSP when the edge costs c1, c2, ..., c⌊n

2 ⌋ take on ex-
actly two values. Perhaps counter-intuitively, it turns out
that the two-class problem is considerably easier than the
two-stripe circulant TSP. Finally, in Section 5, we present
a 10/9-approximation algorithm for finding a minimum-
cost Eulerian tour on two-stripe instances (or equivalently,
finding a minimum-cost Hamiltonian cycle on the metric
completion of a two-stripe instance).

2. Preliminaries: Circulant Graphs and Hamil-
tonicity

We first define circulant graphs in terms of a set S of
edge lengths:

Definition 2.1. Let S ⊂ {1, ..., ⌊n
2 ⌋}. The circulant

graph C⟨S⟩ is the (simple, undirected, unweighted) graph
including exactly the edges whose lengths are in S. I.e.,
the graph with adjacency matrix A = (aij)

n
i,j=1, where

aij =

{
1, (i− j) mod n ∈ S or (j − i) mod n ∈ S

0, else.

Burkard and Sandholzer [5] studied Hamiltonicity and
bottleneck TSP in symmetric circulant graphs, and and
used the following result:

Proposition 2.2 (Burkard and Sandholzer [5]). Let
{a1, ..., at} ⊂

[
⌊n
2 ⌋

]
and let G = gcd(n, a1, ..., at). The cir-

culant graph C⟨{a1, ..., at}⟩ has G components. The ith
component, for 0 ≤ i ≤ G − 1, consists of n/G nodes{

i+ λG mod n : 0 ≤ λ ≤ n

G
− 1

}
.

C⟨{a1, ..., at}⟩ is Hamiltonian if and only if G = 1.

A complete proof can be found in Burkard and Sand-
holzer [5], showing how to recursively construct Hamil-
tonian cycles whenever G = 1 and giving rise to
an O(n log(n)) algorithm for finding Hamiltonian cycles
whenever G = 1. Because many of our results will lean
on this proposition, we sketch the idea below. We also
adopt two notational conventions: First, all vertex labels
are implicitly taken modulo n (e.g. v+a1 is shorthand for
(v + a1) mod n, so that {v, v + a1} is a length-a1 edge).
Second, we use ≡n to denote congruence modulo n.

Proof (sketch). The proof of Proposition 2.2 proceeds re-
cursively. First, consider the graph C⟨{a1}⟩, consisting of
exactly the length-a1 edges. These a1 edges form a cycle
cover, consisting of gcd(n, a1) cycles. For example, start-
ing at vertex 1 and following length-a1 edges yields a cycle

1, 1 + a1, 1 + 2a1, ..., 1 +
(

n
gcd(n,a1)

− 1
)
a1, 1 consisting of

all vertices congruent to 1 mod gcd(n, a1). Note that

1 +

(
n

gcd(n, a1)
− 1

)
a1 + a1 = 1 +

n

gcd(n, a1)
a1 ≡n 1,

since gcd(n, a1) divides a1.

Now suppose that gcd(n, a1, a2, ..., at−1) >
gcd(n, a1, a2, ..., at−1, at) so that C⟨{a1, a2, ..., at−1}⟩
has strictly more components than C⟨{a1, a2, ..., at}⟩.
Burkard and Sandholzer appeal to circulant symmetry
and show that length-at edges can be used to merge the
gcd(n, a1, ..., at−1) Hamiltonian cycles on components
of C⟨{a1, a2, ..., at−1}⟩ into gcd(n, a1, ..., at) Hamilto-
nian cycles on the components of C⟨{a1, a2, ..., at}⟩;
once gcd(n, a1, ..., at) = 1, this process terminates in a
Hamiltonian cycle on all n vertices.

Consider some Hamiltonian cycle
v1, v2, ..., vn/ gcd(n,a1,...,at−1), v1 on the component of
C⟨{a1, a2, ..., at−1}⟩ containing vertex 1. Burkard
and Sandholzer show how to merge together the
gcd(n, a1, ..., at−1)/ gcd(n, a1, ..., at) components of
C⟨{a1, a2, ..., at−1}⟩ consisting of vertices congruent to
1 mod gcd(n, a1, ..., at). Circulant symmetry allows us
to add a multiple of at and translate our cycle to the
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Figure 2: The recursive approach to building Hamiltonian cycles on
circulant graphs. Edges with arrows “wrap around” vertically to the
matching edge with the same number of arrowheads.

components of C⟨{a1, a2, ..., at−1}⟩ that we will merge.

More formally, for k = 0, 1, ..., gcd(n,a1,...,at−1)
gcd(n,a1,...,at)

, we have

cycles

v1 + kat, v2 + kat, ..., vn/ gcd(n,a1,...,at−1) + kat, v1 + kat.

Circulant symmetry then allows us to iteratively merge
these cycles. If {vi, vi+1} is an edge in the cycle
v1, v2, ..., vn/ gcd(n,a1,...,at−1), v1, we merge in the cycle v1+
at, v2 + at, ..., vn/ gcd(n,a1,...,at−1) + at, v1 + at as follows:
delete {vi, vi+1} and {vi + at, vi+1 + at}, and add in edges
{vi, vi + at} and {vi+1, vi+1 + at}. See Figure 2. Once we
have merged the first two components, we proceed simi-
larly. For instance, we next pick some edge {vs+at, vs+1+
at} in our merged cycle; {vs + 2at, vs+1 + 2at} is an edge
in v1 + 2at, v2 + 2at, ..., vn/ gcd(n,a1,...,at−1) + 2at, v1 + 2at.
Deleting these two edges {vs + at, vs+1 + at} and {vs +
2at, vs+1 + 2at}, and adding the edges {vs + at, vs + 2at}
and {vs+1 + at, vs+1 + 2at} will have merged together the
three cycles in

v1 + kat, v2 + kat, ..., vn/ gcd(n,a1,...,at−1) + kat, v1 + kat,

for k = 0, 1, 2.

3. Circulant TSP and Primes

That circulant TSP can be solved in polynomial-time
whenever n is prime follows from Proposition 2.2 immedi-
ately: let ℓ denote the length of a cheapest edge in an input
to circulant TSP (i.e. cℓ = min{c1, c2, ..., c⌊n

2 ⌋}). Then
by Proposition 2.2, the graph C⟨{ℓ}⟩ is Hamiltonian, and
starting at vertex 1 and following edges of length ℓ until
you return to vertex 1 yields a minimum-cost Hamiltonian
cycle of cost n× cℓ. This result was first shown in the 70’s
in Garfinkel [10], but since then, no general results relat-
ing the complexity of circulant TSP to the factorization
of n have been shown. More generally, the same logic im-
plies that any circulant TSP instance can be easily solved

if the cheapest edge-length ℓ is relatively prime to n, and
an optimal solution will have cost n× cℓ.

Our first result extends these connections and shows
that, when n is a prime-squared, it is also easy to de-
termine the cost of circulant TSP solution. In this case,
the cost of an optimal solution depends on up to two edge-
lengths: the cheapest edge-length ℓ, and (if ℓ is not rela-
tively prime to n), the cheapest edge-length that’s rela-
tively prime to n. Note that, if n is a prime-squared, the
only edge-lengths that are not relatively prime to n are
those that are multiples of p. I.e.

gcd(i, n) =

{
p, i is a multiple of p

1, else.

Theorem 3.1. Let n = p2 where p ≥ 3 is a prime. Let ℓ
denote the length of a cheapest edge in an input to circulant
TSP (i.e. cℓ = min{c1, c2, ..., c⌊n

2 ⌋}), and let s denote the
cheapest edge-length that’s relatively prime to n (i.e. cs =
min{S}, where S = {ci : 1 ≤ i ≤ ⌊n

2 ⌋, gcd(n, i) = 1} is the
set of edge-lengths relatively prime to n). If gcd(ℓ, n) =
1, then a minimum-cost Hamiltonian cycle costs n × cℓ.
Otherwise, a minimum-cost Hamiltonian cycle costs (n −
p)× cℓ + p× cs.

If gcd(ℓ, n) = 1, then the circulant graph C⟨{ℓ}⟩ is
Hamiltonian. Otherwise, by Proposition 2.2, C⟨{ℓ}⟩ has
n/ gcd(n, p) = n/p = p components, each of which has p
vertices (and all vertices in a component will be congruent
mod p). We will adopt a convention for plotting C⟨{ℓ, s}⟩
in terms of these components, shown in Figure 3: we start
with the first component of C⟨{ℓ}⟩, consisting of all ver-
tices congruent to 1 mod p, connected by length-ℓ edges
in a cycle that “wraps around” vertically. Then we effec-
tively translate this component by s, plotting all vertices
congruent to 1 + s mod p in the next column. We repeat
this process forming a grid until we reach the component
consisting of all vertices congruent to (1+(p−1)s) mod p
in the rightmost column. These vertices in the last column
are then connected back to vertices in the first column (i.e.
1+(p−1)s+s ≡p 1, so a length-s edge from a vertex in the
last column wraps back around to a vertex in the first col-
umn). However, these length-s edges between the last and
first column do not necessarily wrap around to the same
row. See Figure 3, for instance, and see Gutekunst and
Williamson [15] for more general results on the structure
of circulant graphs.

Before proving Theorem 3.1, we need one basic fact
about linear congruences. See, e.g., Theorem 57 of Hardy
and Wright [16].

Proposition 3.2. The linear congruence

ax ≡n b
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Figure 3: Convention for plotting C⟨{ℓ, s}⟩ when n = 25, ℓ = 10,
and s = 9. Length-ℓ edges are in black and length-s edges are in red.
Edges on the border “wrap around” to the matching edge with the
same number of arrowheads.

has a solution if and only if gcd(a, n) divides b. Moreover,
there are exactly gcd(a, n) solutions which take the form

x0 + λ
n

gcd(a, n)
, λ = 0, 1, ..., gcd(a, n)− 1

for some 0 ≤ x0 < n
gcd(a,n) .

Proof (of Theorem 3.1). If gcd(ℓ, n) = 1, then the circu-
lant graph C⟨{ℓ}⟩ is Hamiltonian, so following edges of
length ℓ yields a Hamiltonian cycle of cost n × cℓ (and
since any Hamiltonian cycle must use n edges all of which
cost at least cℓ, this is optimal).

Otherwise, any Hamiltonian cycle must cost at least
(n − p) × cℓ + p × cs : Such a cycle must use at least p
edges of cost at least cs, as all edges cheaper than cs stay
within components of C⟨{ℓ}⟩ and at least p other edges
are needed to connect these components in a cycle; the re-
maining n− p edges must cost at least cℓ. Thus it suffices
to show that a Hamiltonian cycle using (n − p) length-ℓ
edges and p length-s edges exists. Note that such a cy-
cle will use exactly one length-s edge between each pair
of adjacent columns (following the convention of Figure
3), and then one final length-s edge wrapping from the
last column to the first. We construct a Hamiltonian path
starting at vertex 1, using (p− 1) edges of length ℓ to tra-
verse that column, and then taking a length-s edge to the
next column; we’ll repeat this logic, entering a column, us-
ing (p− 1) edges of length-ℓ to traverse that column, and
then using a length-s edge to move to the next column.
In each column, the only choice is whether we start by
traversing “up” (i.e. from vertex 1 to (1 − ℓ) mod n) or
“down” (i.e. from vertex 1 to (1+ ℓ) mod n). We need to
show that we can choose a sequence of “up” and “down”
columns so that the last vertex visited in the final column
is 1− s.

Our intuition for doing so is shown in Figure 4, which
first shows a sequence where we choose to go down in the

Figure 4: One possible sequence of up- and down-moves with the
final vertex visited in each column marked in red (left). All possible
final vertices marked in each column when n = 72 (right).

first four columns and then up in the last three. Note
that, each time we go down in a column, the final vertex
visited in that column is one row above the first vertex in
that column (modulo the number of rows); each time we
go up, the final vertex visited in that column is one row
below the first vertex in that column (modulo the number
of rows). The red vertices trace out the last vertex visited
in each column. On the right of Figure 4, we trace out
(in red) all vertices we can end up at by any a sequence
of ups and downs: there are two red vertices in the first
column (based on whether we go up or down), then three
red vertices in the second column (corresponding to going
down twice, going down once and up once, or going up
twice), and so on. By the penultimate column, we can
choose a sequence of ups and downs to reach every vertex
in that column.

More formally, suppose that vertex 1 − s is in row r,
with 0 ≤ r < p (and the top row as row 0). We need to
show that, regardless of r, we can choose a sequence of ups
and downs to end our Hamiltonian path at the vertex in
the row r of the last column (i.e., at 1 − s). If we choose
to go down k times and up p − k times, we end in row
((−k) + (p − k)) mod p. It thus suffices to show that we
can choose k, with 0 ≤ k ≤ p, such that p−2k ≡p r. That
is, 2k ≡p p−r. By Proposition , there is a unique solution
0 ≤ k < p. This value of k gives rise to a Hamiltonian
path from 1 to 1− s using exactly p− 1 edges of length-s;
taking one final length-s edge from 1 − s to 1 yields the
desired Hamiltonian cycle.

Algorithmically, note that we can find the row r of 1−s
by solving

1− s ≡n (p− 1)× s+ r × ℓ.

We can then find the desired value of k, both which
can be done using the extended Euclidean algorithm in
O(log2(n)) time. See, for example, Theorem 4.4 in [30].
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4. The Two-Class TSP

In the (1, 2)−TSP, all edges have cost 1 or 2. This well-
studied problem is NP-hard and is a special case of the
more general metric TSP, but better approximation algo-
rithms are known for the (1, 2)−TSP than for the met-
ric TSP (see, e.g., Papadimitriou and Yannakakis [26],
Berman and Karpinski [3], Karpinski and Schmied [18],
and Adamaszek, Mnich, and Paluch [1]).

In this section, we consider the (1, 2)−TSP specialized to
circulant instances, the two-class circulant TSP : Here, the
ci can take on exactly two distinct values; without loss of
generality, these values are 1 (“cheap”) or 2 (“expensive”).
That is, ci ∈ {1, 2} for all 1 ≤ i ≤ ⌊n

2 ⌋.

Theorem 4.1. Consider an instance of the two-class cir-
culant TSP where S := {i : ci = 1} denotes the set of
cheap edges, and let g := gcd(n, S) denote the GCD of n
and all edge-lengths in S. Then the optimal solution to
this instance has cost:{

n, g = 1

n+ g, g > 1.

Proof. First, suppose that g = 1. Then by Proposition 2.2,
the graph C⟨S⟩ is Hamiltonian, so there is a Hamiltonian
cycle just using the cheap edges in S.

Otherwise, g > 1, so 1 /∈ S and the graph C⟨S⟩ has
g components. Any Hamiltonian cycle must use at least
g expensive edges and thus costs at least n + g. To con-
struct such a Hamiltonian cycle, we start by building a
Hamiltonian path v1 = 1, v2, ...vn/g starting at vertex 1
on the component of C⟨S⟩ including vertex 1; this can be
done using the algorithm in Proposition 2.2 (obtaining a
Hamiltonian cycle, say, and deleting an arbitrary edge in-
cident to vertex 1). By Proposition 2.2, all vertices in this
component are congruent to 1 mod g. We translate this
Hamiltonian path to the the other components, obtaining
Hamiltonian paths

v1 + k, v2 + k, ...vn/g + k, k = 0, 1, ..., (g − 1)

on each component. We join these paths with length-1
edges as in Figure 5, adding the edges {vn/g + k, vn/g +
k+1} and {k, k+1} for k even. This yields a Hamiltonian
path from vertex 1, and ending in the gth component of
C⟨S⟩ (where vertices are all congruent to 0 mod g).

This Hamiltonian path will either end at v1+(g−1) = g
(if g is even) or vn/g +(g− 1) (if g is odd). Note, however,
that both are adjacent to 1 by a cost-2 edge: otherwise,
they would be in the same component of C⟨S⟩. Thus, we
can extend this Hamiltonian path to a Hamiltonian cycle,
and we used exactly g cost-2 edges.

1

v2

v3

v(n/g)−1

vn/g

2

v2 + 1

v3 + 1

v(n/g)−1 + 1

vn/g + 1

3

v2 + 2

v3 + 2

v(n/g)−1 + 2

vn/g + 2

g

v2 + g − 1

v3 + g − 1

v(n/g)−1 + g − 1

vn/g + g − 1

Figure 5: Extending a Hamiltonian path on one component of C⟨S⟩
to a Hamiltonian path on all vertices in the proof of Theorem 4.1
when g is even. When g is odd, the Hamiltonian path ends at vn/g+
g − 1.

5. Minimum-Cost Eulerian Tours

In our final section, we consider one more problem re-
lated to the two-stripe circulant TSP based on a question
posed by Jens Vygen: finding a minimum-cost Eulerian
tour on a two-stripe circulant instance (or equivalently,
finding a Hamiltonian tour on a the metric completion of
a two-stripe circulant TSP instance). Gerace and Irving
[12] give a (4/3)-approximation algorithm for general cir-
culant TSP instances that are also metric (and therefore
for finding minimum-cost Eulerian Tours on any circulant
instance). Here, we show that that ratio can be improved
to (10/9) when considering a two-stripe instance.

More specifically, consider a circulant instance with two
finite edge costs 0 ≤ ci ≤ cj < ∞. We assume that
gcd(n, i, j) = 1: otherwise, by Proposition 2.2, the graph
C⟨{i, j}⟩ will not be connected, and thus it will not admit
an Eulerian tour. Similarly, let g = gcd(n, i). If g = 1,
then the length-i edges form a Hamiltonian cycle, and form
an optimal Eulerian tour of cost n× ci. Otherwise, C⟨{i}⟩
consists of g components, and an Eulerian tour costs at
least (n − g) × ci + g × cj , since only the length-j edges
can cross between components of C⟨{i}⟩.

We now consider two extremal cases. First, if ci = cj ,
then any Hamiltonian cycle is optimal. Figure 6 sketches
such a Hamiltonian cycle, based on the parity of g, and
following our convention of plotting components of C⟨{i}⟩
as columns, so that (cheap) length-i edges are vertical and
(expensive) length-j edges are horizontal. Conversely, if
ci = 0, we can frivolously use length-i (vertical) edges. We
consider an Eulerian tour as shown in Figure 7: There will
be some vertex (1 − j) mod n in the last column (high-
lighted in blue) connected to vertex 1 by a length-j edge.
We follow a zig-zagging Hamiltonian path ending at either
the bottom or top vertex in that column, which has n/g
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Figure 6: A feasible Hamiltonian cycles when g is even (left) and
odd (right), which are optimal Eulerian tours when ci = cj .

Figure 7: Optimal Eulerian tour when ci = 0, depending on the row
of the vertex (1− j) mod n within the last column.

vertices in it. We then take extra length-i edges to reach
(1 − j) mod n: either “wrapping around” (as in the left
of Figure 7) or turning within the same column (as in the
right), depending on whichever uses fewer length-i edges.
Since there are n/g length-i edges in this column, one di-
rection will use at most n/(2g) extra length-i edges; any
tour will cost at least g×cj , and (when ci = 0) these tours
cost exactly g × cj

Our final result, which gives rise to a 10/9-
approximation algorithm, is that at least one of these ex-
tremal tours will always be within 10/9 of the minimum-
cost Eulerian tour. To make the analysis more clean, we
scale all edge costs by 1/cj (and if cj = 0, then ci = cj = 0
and our tour from Figure 6 is optimal) and define c := ci

cj
.

Then our cheaper edges cost 0 ≤ c ≤ 1, and our expensive
edges cost 1. Thus our tours from Figure 6 cost

(n− 2(g − 1)) c+ 2(g − 1).

Our tours from Figure 7 use (n/g) − 1 length-i edges in
each of the g columns in the original Hamiltonian path, at
most n/(2g) additional length-i edges in the last column,
and exactly g length-j edges. All together, they thus cost

g

(
n

g
− 1

)
c+

n

2g
c+ g =

(
n− g +

n

2g

)
c+ g.

Theorem 5.1. Consider a two-stripe circulant input
where gcd(n, i, j) = 1 and g := gcd(n, i) > 1. At least
one of the tours shown in Figures 6 and 7 has cost within
(10/9) of the minimum-cost Eulerian tour.

Figure 8: Example of
(g−2)(1−c)
(n−g)c+g

(blue) and
n
2g

c

(n−g)c+g
(red) when

n = 24 and g = 3.

Proof. First we note that any Eulerian tour must use at
least n edges, and at least g of these must be length-j
to fully connect the components of C⟨{i}⟩ and return to
vertex 1. Thus, any Eulerian tour costs at least (n−g)c+g.
Note also that this implies that, if g = 2, the Eulerian tours
from Figure 6 are optimal.

Hence, we assume that g ≥ 3. We will benchmark each
tour against the lowerbound, and thus want to show that

min{ (n− 2(g − 1)) c+ 2(g − 1)

(n− g)c+ g
,

(
n− g + n

2g

)
c+ g

(n− g)c+ g
} ≤ 10

9
.

Equivalently, that

min{1 + (g − 2)(1− c)

(n− g)c+ g
, 1 +

n
2g c

(n− g)c+ g
} ≤ 10

9
.

or that

min{ (g − 2)(1− c)

(n− g)c+ g
,

n
2g c

(n− g)c+ g
} ≤ 1

9
.

Straightforward calculus shows that (g−2)(1−c)
(n−g)c+g is decreas-

ing in c for c ∈ [0, 1] (and decreases from g−2
g to 0), while

n
2g c

(n−g)c+g is increasing in c for c ∈ [0, 1] (and increases from

0 to 1/(2g). Thus, min{ (g−2)(1−c)
(n−g)c+g ,

n
2g c

(n−g)c+g} occurs when

both terms are equal: when

(g − 2)(1− c) =
n

2g
c.

See, for instance, Figure 8.

Solving for c, we find

c =
2g(g − 2)

n+ 2g(g − 2)
.
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Plugging in for c, we find that

n
2g c

(n− g)c+ g
=

n
2g

2g(g−2)
n+2g(g−2)

(n− g) 2g(g−2)
n+2g(g−2) + g

=

n(g−2)
n+2g(g−2)

(n− g) 2g(g−2)
n+2g(g−2) + g

=
n(g − 2)

(n− g)2g(g − 2) + g(n+ 2g(g − 2))

=
n(g − 2)

2ng(g − 2)− 2g2(g − 2) + gn+ 2g2(g − 2)

=
g − 2

2g2 − 3g
.

Hence,

min{ (g − 2)(1− c)

(n− g)c+ g
,

n
2g c

(n− g)c+ g
} ≤ g − 2

2g2 − 3g
.

Finally, we note that g−2
2g2−3g is decreasing in g for g ≥ 3,

and at g = 3, g−2
2g2−3g = 1/9. This completes our proof.
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